Learn how to create and configure routing agents to direct tasks to specialized tools and agents
synthesize_results
){agent_name}-routing
in LanceDB, storing embeddings of available routes for fast semantic similarity matching.
.agent.yml
files with type: routing
. Here’s the basic structure:
model
: The LLM model to use for routing decisionstype
: Must be set to routing
to identify this as a routing agent (agent-level field)routes
: Array of paths to agents, workflows, or SQL files that can handle tasksroute_fallback
: Default agent to use when no specific route matchesreasoning
: Configuration for the reasoning processsystem_instructions
: Custom instructions for the routing behavior (has a default value)embed_model
: Embedding model for semantic similarity (default: “text-embedding-3-small”)n_dims
: Embedding dimensions (default: 512)top_k
: Number of top matches to consider (default: 4)factor
: Scaling factor for similarity scoring (default: 5)table
: Vector database table name (default: “documents”)db_path
: LanceDB database path (default: “.lancedb”)synthesize_results
: Whether to process and format tool outputs (default: true).agent.yml
files for specialized tasks: